Osmotically-Driven Membrane Processes for Sustainable Water Reuse and Resource Recovery: Exploration of Branched Polyethyleneimine as Osmotic Agent

¹Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

²Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

> ³Division of Chemistry and Chemical Engineering, California Institute of Technology, USA

Manki Cho², Jong-In Han²*, and Mamadou S. Diallo^{1,3}*

Membrane-Based Separation Processes

Separation science plays a major role to maintain the global sustainability

Membrane-base separation processes

- < Advantages >
- (i) Easy and simple operation
- (ii) Low cost & energy requirements
- (iii) Easily combined into hybrid systems with scalability
- (iv) Environmental-friendly processes

Osmotically-Driven Membrane Processes

- # Emerging membrane-based separation technology
- # Driving force : Osmotic gradients

Principle of Forward Osmosis (FO)

no energy!

Potential to be an energy-efficient separation process with low membrane fouling

Principle of Forward Osmosis (FO)

Draw solution regeneration step determines the total energy consumption of FO

Therefore, selection of a **draw solute** & its **regeneration method** is crucial for the viability of FO

Selection of Draw Solutes for FO

REQUIREMENTS

Cost-effective

Non-toxic/hazardous

High solubility

(High osmotic pressure)

Low viscosity

Easy regeneration

Osmotic pressure : Colligative property

(Van't Hoff equation : $\pi = i * \frac{n_s}{v} RT$)

→ Inorganic salts, Small organic molecules

Draw solute	$MgCl_2$	NH_4HCO_3	Glucose
Regeneration method	NF, RO	Low Grade Heat ∼60°C	NF

Advantages

High osmotic pressure

Disadvantages

Energy-intensive
High reverse solute diffusion

New FO Process

Branched Polyethyleneimine (PEI) as Osmotic Agent

Advantages

- i. Cost-effective
- ii. Muti-functional
- iii. Easily regeneratedby low energy

Nanofibrous Composite FO Membranes

- # Electrospinning -> Highly porous nanofibrous support layer
- # Interfacial polymerization -> Thin NF-like selective layer

Interfacial Polymerization

A NFC FO membrane

 $(A \sim 7 \text{ bar/LMH}, S \sim 200 \text{um})$

Increased Permeate Fluxes with Low Reverse Solute Diffusion

Draw Solution Regeneration by Ultrafiltration

PEI Concentration (wt%)	UF Permeate Flux (LMH)	PEI Rejection (%)
5.0	14.3	94
2.5	38.8	98

- Effective UF regeneration of PEI

Applications: Separation of Microalgal-based Colloidal Suspensions

FO Separation of Microalgal Suspensions

No irreversible fouling (Flux recovery rate : ~ 100 %)

Conclusions

- Utilization of macromolecular PEI draw solutes and nanofibrous FO membranes with a porous NF-like separation layer has shown a potential in terms of high permeate flux and low reverse solute diffusion
- Utilization of the PEI FO process for the separation of microalgal-based colloidal suspensions was effective (Flux recovery rate: ~ 100 %)
- The PEI FO process can be applied to water reuse & resource recovery